Controlled-cortical impact reduces volitional forelimb strength in rats.

نویسندگان

  • David Pruitt
  • Seth Hays
  • Ariel Schmid
  • Connie Choua
  • Lily Kim
  • Jenny Trieu
  • Michael P Kilgard
  • Robert L Rennaker
چکیده

Traumatic brain injury (TBI) is one of the largest health problems in the United States and affects both cognitive and motor function. Although weakness is common in TBI patients, few studies have demonstrated a reduction in strength in models of brain injury. We have developed a behavioral method to measure volitional forelimb strength and quantify forelimb weakness following traumatic brain injury. In this paper, we report the ability of the isometric pull task to measure both acute and chronic impairments in forelimb motor function following a controlled cortical impact (CCI) in rodents. Following CCI, volitional forelimb strength is reduced by 36% and remains significantly reduced after 6 weeks of post-lesion training. We also show that CCI results in impairment of multiple additional measures of forelimb function for several weeks post-injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury.

Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly 2 million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with...

متن کامل

Median and ulnar nerve injuries reduce volitional forelimb strength in rats.

INTRODUCTION Peripheral nerve injuries (PNI) are among the leading causes of physical disability in the United States. The majority of injuries occur in the upper extremities, and functional recovery is often limited. Robust animal models are critical first steps for developing effective therapies to restore function after PNI. METHODS We developed an automated behavioral assay that provides ...

متن کامل

Vagus Nerve Stimulation During Rehabilitative Training Improves Forelimb Recovery After Chronic Ischemic Stroke in Rats.

BACKGROUND AND OBJECTIVE Stroke is a leading cause of long-term disability. Currently, there are no consistently effective rehabilitative treatments for chronic stroke patients. Our recent studies demonstrate that vagus nerve stimulation (VNS) paired with rehabilitative training improves recovery of function in multiple models of stroke. Here, we evaluated the ability of VNS paired with rehabil...

متن کامل

Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats.

Advanced age is associated with a higher incidence of stroke and worse functional outcomes. Vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a potential method to improve recovery after brain injury but to date has only been evaluated in young rats. Here, we evaluated whether VNS paired with rehabilitative training would improve recovery of forelimb function afte...

متن کامل

Experimental diabetes attenuates cerebral cortical-evoked forelimb motor responses.

Poorly controlled diabetes leads to debilitating peripheral complications, including retinopathy, nephropathy, and neuropathy. Chronic diabetes also impairs the central nervous system (CNS), leading to measurable deficits in cognition, somatosensory, and motor function. The cause of diabetes-associated CNS impairment is unknown. In this study, sustained hyperglycemia resulting from insulin defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1582  شماره 

صفحات  -

تاریخ انتشار 2014